This study presents on ZnO/TiO2 supported on PVC (ZnO/TiO2@PVC) in the photocatalytic removal of paraquat dichloride. The ZnO/TiO2@PVC was characterized using XRD, FESEM-EDX, FTIR, and AFM. Findings indicated that ZnO/TiO2@PVC allowed degradation of paraquat dichloride under UV irradiation by the rate of up to 73%. XRD pattern indicated the presence of both TiO2(anatase) and ZnO (zincite) crystalline as well as PVC amorphous structures. FESEM and AFM results revealed the observed shape and surface of TiO2 interconnected nanowires with ZnO nanorods uniformly distributed according to EDX mapping. The reduced surface roughness was also shown in the supported photocatalyst. FTIR analysis clearly demonstrate the combined spectra of immobilised ZnO/TiO2 powder catalyst onto the PVC in the composite. Kinetic study of the degradation process was performed according to pseudo-first-order and the influence of ZnO/TiO2 coating onto PVC polymer and initial paraquat concentration were investigated on the treatment performance. Under optimized condition (pH = 7, PQ =20 mg/L and catalyst coating =15%), the stability and reusability of the supported catalyst was also evaluated over ten sequential treatment runs, and the catalyst maintain high reactivity. High recyclability of the ZnO/TiO2@PVC composites as catalyst in photodegradation processes are also reported in this study.