Methods based on numerical optimization are useful and effective in the design of control systems. This paper describes the design of retarded fractional delay differential systems (RFDDSs) by the method of inequalities, in which the design problem is formulated so that it is suitable for solution by numerical methods. Zakian s original formulation, which was first proposed in connection with rational systems, is extended to the case of RFDDSs. In making the use of this formulation possible for RFDDSs, the associated stability problems are resolved by using the stability test and the numerical algorithm for computing the abscissa of stability recently developed by the authors. During the design process, the time responses are obtained by a known method for the numerical inversion of Laplace transforms. Two numerical examples are given, where fractional controllers are designed for a time-delay and a heat-conduction plants.