Hall thruster (HT) is one of the thrusters that are systematically applied in space. If to compare HT with plasma ion thrusters, it has lower lifetime and specific impulse. HT has a set of advantages, and that is why interest to this plasma thruster is high. It has relatively simple design and technology of production. HT does not require a complex power supply unit, and it is very important for spacecraft. Propulsion system on the base of HT has lower mass, simpler technology, and less time of production. One of the main HT characteristics that require improvement is the lifetime of thruster. As it is known, one of the main factors that decrease thruster lifetime is the wear of discharge chamber (DCh). With the analysis of demands to HT, it is understandable that the required lifetime is more than 10 years. So the question about lifetime of the HT is still open. This chapter presents the overview of the thruster elements lifetimes and the overview of methods of thruster erosion investigation. It shows advantages and disadvantages of optical methods of DCh erosion rate investigation. Chapter presents modified method of optical investigation. The results of HT research under various modes of operation and results of tests with different ceramic are presented.