Real-time magnetic resonance imaging (MRI) is a promising alternative to X-ray fluoroscopy for guiding cardiovascular catheterization procedures. Major challenges, however, include the lack of guidewires that are compatible with the MRI environment, not susceptible to radiofrequency-induced heating, and reliably visualized. Preclinical evaluation of new guidewire designs has been conducted at 1.5T. Here we further evaluate the safety (device heating), device visualization, and procedural feasibility of 3T MRI-guided cardiovascular catheterization using a novel MRI-visible glass-fiber epoxy-based guidewire in phantoms and porcine models. Methods To evaluate device safety, guidewire tip heating (GTH) was measured in phantom experiments with different combinations of catheters and guidewires. In vivo cardiovascular catheterization procedures were performed in both healthy (N = 5) and infarcted (N = 5) porcine models under real-time 3T MRI guidance using a glass-fiber epoxy-based guidewire. The times for each procedural step were recorded separately. Guidewire visualization was assessed by measuring the dimensions of the guidewire-induced signal void and contrastto-noise ratio (CNR) between the guidewire tip signal void and the blood signal in real-time gradient-echo MRI (specific absorption rate [SAR] = 0.04 W/kg). Results In the phantom experiments, GTH did not exceed 0.35˚C when using the real-time gradientecho sequence (SAR = 0.04 W/kg), demonstrating the safety of the glass-fiber epoxy-based guidewire at 3T. The catheter was successfully placed in the left ventricle (LV) under real