Original iterative learning control (OILC) has been proved a powerful tool in dealing with the model-free control problems by repetitively corrections based on the control error. However, the steady-state error under widely-used proportional-type original iterative learning control (P-type OILC) is highly corresponded to the proportional learning gain, making the algorithm parameter-determined. Therefore, a new gradient-descent iterative learning control (GDILC) algorithm is proposed to achieve a parameter-free approach by simulating the gradient-descent process. First, GDILC problem is formulated mathematically. Next, the idea of the algorithm is proposed, the analyses of the convergence and the steady-state error are conducted and the algorithm is implemented. GDILC will generate a random correction with a gradient-descent upper bound, rather than a correction proportional to the error in P-type OILC. Finally, illustrative and application simulations are conducted to validate the algorithm. Results show that the algorithm will be convergent after adequate iterations under proper corrections. The steady-state error will be less affected by the algorithm parameters under GDILC than that under OILC.