2007
DOI: 10.1142/s0218127407019445
|View full text |Cite
|
Sign up to set email alerts
|

Method to Solve the Nonlinear Infinite Horizon Optimal Control Problem With Application to the Track Control of a Mobile Robot

Abstract: We present a numerical method to solve the infinite time horizon optimal control problem for low dimensional nonlinear systems. Starting from the linear-quadratic approximation close to the origin, the extremal field is efficiently calculated by solving the Euler-Lagrange equations backward in time. The resulting controller is given numerically on an interpolation grid. We use the method to obtain the optimal track controller for a mobile robot. The result is a globally asymptotically stable nonlinear controll… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
3

Year Published

2014
2014
2023
2023

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(6 citation statements)
references
References 5 publications
0
3
0
3
Order By: Relevance
“…This section considers a linear model for the robot and presents results of the computed command vector, optimal control and resulting trajectories (Eqs. [10][11][12].…”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…This section considers a linear model for the robot and presents results of the computed command vector, optimal control and resulting trajectories (Eqs. [10][11][12].…”
Section: Resultsmentioning
confidence: 99%
“…The system follows a command vector (10) from which the optimal control is found as (11) Finally, the optimal trajectory from the discretized state transition equation is thus readily found from (12) III.…”
Section: A Lq Tracking Of the Optimal Path Found In Rpomentioning
confidence: 99%
See 1 more Smart Citation
“…Bu çözümde tasarlanan denetleyicide, sistem parametreleri bilinmeden, değer fonksiyonunun optimal denetleyicinin değer fonksiyonuna yakınsamasını sağlanmıştır. Doğrusallaştırılmış halleri denetlenebilir olan doğrusal olmayan sistemler için optimal dinamik denklemleri zamanda geriye doğru çözülerek optimal denetleyici tasarlanabilir [9][10][11][12]. Bu yöntemde zamanda geriye doğru çözümün başlangıç noktası, doğrusallaştırılmış sistemin denge noktası yakınlarındaki bir hiper elipsoit yüzeyidir.…”
Section: Giriş (Introduction)unclassified
“…Daha sonra, bu optimal yollar optimal geri beslemede kullanılmaktadır. 10.17341/gazimmfd.875563 Anahtar Kelimeler: Doğrusal olmayan optimal denetim, HJB denklemi, doğrusal girişli doğrusal olmayan sistemler, genişlik öncelikli arama, Euler-Lagrange geri integrasyon yöntemi, üçgenleme Optimal control of a class of nonlinear systems using Euler-Lagrange back integration method H I G H L I G H T S  Optimal control of nonlinear, linearizable input affine systems  Euler-Lagrange back integration method  Tessellation of optimal paths in the state-space…”
unclassified