Background
Esophageal cancer, a global health concern, impacts predominantly men, particularly in Eastern Asia. Lymph node metastasis (LNM) significantly influences prognosis, and current imaging methods exhibit limitations in accurate detection. The integration of radiomics, an artificial intelligence (AI) driven approach in medical imaging, offers a transformative potential. This meta-analysis evaluates existing evidence on the accuracy of radiomics models for predicting LNM in esophageal cancer.
Methods
We conducted a systematic review following PRISMA 2020 guidelines, searching Embase, PubMed, and Web of Science for English-language studies up to November 16, 2023. Inclusion criteria focused on preoperatively diagnosed esophageal cancer patients with radiomics predicting LNM before treatment. Exclusion criteria were applied, including non-English studies and those lacking sufficient data or separate validation cohorts. Data extraction encompassed study characteristics and radiomics technical details. Quality assessment employed modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Radiomics Quality Score (RQS) tools. Statistical analysis involved random-effects models for pooled sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC). Heterogeneity and publication bias were assessed using Deek’s test and funnel plots. Analysis was performed using Stata version 17.0 and meta-DiSc.
Results
Out of 426 initially identified citations, nine studies met inclusion criteria, encompassing 719 patients. These retrospective studies utilized CT, PET, and MRI imaging modalities, predominantly conducted in China. Two studies employed deep learning-based radiomics. Quality assessment revealed acceptable QUADAS-2 scores. RQS scores ranged from 9 to 14, averaging 12.78. The diagnostic meta-analysis yielded a pooled sensitivity, specificity, and AUC of 0.72, 0.76, and 0.74, respectively, representing fair diagnostic performance. Meta-regression identified the use of combined models as a significant contributor to heterogeneity (p-value = 0.05). Other factors, such as sample size (> 75) and least absolute shrinkage and selection operator (LASSO) usage for feature extraction, showed potential influence but lacked statistical significance (0.05 < p-value < 0.10). Publication bias was not statistically significant.
Conclusion
Radiomics shows potential for predicting LNM in esophageal cancer, with a moderate diagnostic performance. Standardized approaches, ongoing research, and prospective validation studies are crucial for realizing its clinical applicability.