Visual impairment represents a significant health and economic burden affecting 596 million globally. The incidence of visual impairment is expected to double by 2050 as our population ages. Independent navigation is challenging for persons with visual impairment, as they often rely on non-visual sensory signals to find the optimal route. In this context, electronic travel aids are promising solutions that can be used for obstacle detection and/or route guidance. However, electronic travel aids have limitations such as low uptake and limited training that restrict their widespread use. Here, we present a virtual reality platform for testing, refining, and training with electronic travel aids. We demonstrate the viability on an electronic travel aid developed in-house, consist of a wearable haptic feedback device. We designed an experiment in which participants donned the electronic travel aid and performed a virtual task while experiencing a simulation of three different visual impairments: age-related macular degeneration, diabetic retinopathy, and glaucoma. Our experiments indicate that our electronic travel aid significantly improves the completion time for all the three visual impairments and reduces the number of collisions for diabetic retinopathy and glaucoma. Overall, the combination of virtual reality and electronic travel aid may have a beneficial role on mobility rehabilitation of persons with visual impairment, by allowing early-phase testing of electronic travel aid prototypes in safe, realistic, and controllable settings.