Ion mobility (IM) is a method that measures the time taken for an ion to travel through a pressurized cell under the influence of a weak electric field. The speed by which the ions traverse the drift region depends on their size: large ions will experience a greater number of collisions with the background inert gas (usually N 2 ) and thus travel more slowly through the IM device than those ions that comprise a smaller cross-section. In general, the time it takes for the ions to migrate though the dense gas phase separates them, according to their collision cross-section (Ω).Recently, IM spectrometry was coupled with mass spectrometry and a traveling-wave (T-wave) Synapt ion mobility mass spectrometer (IM-MS) was released. Integrating mass spectrometry with ion mobility enables an extra dimension of sample separation and definition, yielding a three-dimensional spectrum (mass to charge, intensity, and drift time). This separation technique allows the spectral overlap to decrease, and enables resolution of heterogeneous complexes with very similar mass, or mass-to-charge ratios, but different drift times. Moreover, the drift time measurements provide an important layer of structural information, as Ω is related to the overall shape and topology of the ion. The correlation between the measured drift time values and Ω is calculated using a calibration curve generated from calibrant proteins with defined cross-sections , successfully demonstrated that protein quaternary structure is maintained in the gas phase, and highlighted the potential of this approach in the study of protein assemblies of unknown geometry. Here, we provide a detailed description of IMS-MS analysis of protein complexes using the Synapt (Quadrupole-Ion Mobility-Time-of-Flight) HDMS instrument (Waters Ltd; the only commercial IM-MS instrument currently available) 10 . We describe the basic optimization steps, the calibration of collision cross-sections, and methods for data processing and interpretation. The final step of the protocol discusses methods for calculating theoretical Ω values. Overall, the protocol does not attempt to cover every aspect of IM-MS characterization of protein assemblies; rather, its goal is to introduce the practical aspects of the method to new researchers in the field.
Video LinkThe video component of this article can be found at https://www.jove.com/video/1985/
ProtocolThe procedure we describe focuses solely on IM-MS analysis of protein complexes. Therefore, we suggest that researchers unacquainted with the field of structural MS refer to the sample preparation steps, instrument calibration and MS and tandem MS optimization procedures described in Kirshenbaum et al. 2009 http://www.jove.com/index/details.stp?ID=1954. In general, this protocol involves low micromolar concentrations of complex (1-20 μM) in a volatile buffer such as ammonium acetate (0.005 -1 M, pH 6-8). Given that 1-2 μl are consumed per nanoflow capillary, we suggest 10-20 μl as a minimum volume, to enable optimization of MS conditions. Part...