Nowadays, mobile applications demand, in large extent, an improvement in the overall efficiency of systems, in order to diversify the number of applications. For unmanned aerial vehicles (UAVs), an enhancement in their performance translates into larger payloads and range. These factors encourage the search for novel propulsion architectures, which present high synergy with the airframe and remaining components and subsystems, to enable a better UAV performance. In this context, technologies broadly examined are distributed propulsion (DP), thrust split (TS), and boundary layer ingestion (BLI), which have shown potential opportunities to achieve ambitious performance targets (ACARE 2020, NASA N+3). The present work briefly describes these technologies and shows preliminary results for a conceptual propulsion configuration using a set number of propulsors. Furthermore, the simulation process for a blended wing body (BWB) airframe using computational fluid dynamics (CFD) OpenFOAM software is described. The latter is examined due to its advantages in terms of versatility and cost, compared with licensed CFD software. This work does not intend to give a broad explanation of each of the topics, but rather to give an insight into the state of the art in modeling of distributed propulsion systems and CFD simulation using open-source software implemented in UAVs.