2022
DOI: 10.3390/ma15031265
|View full text |Cite
|
Sign up to set email alerts
|

Methodology to Determine Melt Pool Anomalies in Powder Bed Fusion of Metals Using a Laser Beam by Means of Process Monitoring and Sensor Data Fusion

Abstract: Additive manufacturing, in particular the powder bed fusion of metals using a laser beam, has a wide range of possible technical applications. Especially for safety-critical applications, a quality assurance of the components is indispensable. However, time-consuming and costly quality assurance measures, such as computer tomography, represent a barrier for further industrial spreading. For this reason, alternative methods for process anomaly detection using process monitoring systems have been developed. Howe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
7
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 25 publications
(8 citation statements)
references
References 31 publications
0
7
0
1
Order By: Relevance
“…Neben der Verwendung der EOS‐Anlagen im AMC werden diese in zahlreichen anderen Forschungsprojekten eingesetzt. Die Projekte befassen sich u. a. mit der experimentellen Validierung einer am iwb entwickelten Prozesssimulation, mit Untersuchungen zu den fertigungstechnischen Grenzen des Verfahrens oder der Fertigung von Mikrostrukturen mit wirksamem und kontrollierbarem Dämpfungsverhalten [42–50].…”
Section: Vorhandende Amc‐forschungsinfrastrukturunclassified
“…Neben der Verwendung der EOS‐Anlagen im AMC werden diese in zahlreichen anderen Forschungsprojekten eingesetzt. Die Projekte befassen sich u. a. mit der experimentellen Validierung einer am iwb entwickelten Prozesssimulation, mit Untersuchungen zu den fertigungstechnischen Grenzen des Verfahrens oder der Fertigung von Mikrostrukturen mit wirksamem und kontrollierbarem Dämpfungsverhalten [42–50].…”
Section: Vorhandende Amc‐forschungsinfrastrukturunclassified
“…Processing the raw data acquired from sensory modules is crucial in generating awareness and extracting knowledge from the undergoing processes. Researchers proposed various methods, from conventional thresholding and image processing techniques (Baumann & Roller, 2016;Borish et al, 2020;Harbig et al, 2022;Zhao et al, 2021) to the latest DL-based algorithms Pandiyan et al, 2022). Traditional methods require manual or semi-manual filters and feature generation and selection, which in small-scale problems would be feasible.…”
Section: Introductionmentioning
confidence: 99%
“…Despite the traditional methods in which the data and features were known to the researcher for an unknown result, in ML-based methods, the data and the results are known, and the goal is to find the appropriate features and formula correlating the input data to the output. Jana et al (Harbig et al, 2022) proposed a manual filter selection and calibration approach for melt pool anomalies detection. The author utilized two photodiodes to gather 13800 frames per second with 160*140 pixels per frame.…”
Section: Introductionmentioning
confidence: 99%