DOI: 10.11606/t.3.2019.tde-21112019-113201
|View full text |Cite
|
Sign up to set email alerts
|

Methods and algorithms for knowledge reuse in multiagent reinforcement learning.

Abstract: Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. However, the learning process has a high sample-complexity to infer an effective policy, especially when multiple agents are simultaneously actuating in the environment. We here propose to take advantage of previous knowledge, so as to accelerate learning in multiagent RL problems. Agents may reuse knowledge gathered from previously solved tasks, and they may also receive guidance from mo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 32 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?