The ESS Design: Accelerator 6The ESS Design: Target 66The ESS Design: Controls 93The ESS Design: Conventional Facilities 109Physica ScriptaPhys. Scr. 93 (2018) 014001 (121pp) https://doi.org/10. 1088/1402-4896/aa9bff This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercialNoDerivs 3.0 licence. Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercialNoDerivs 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Neutron scattering is a well-developed and extensively used means to get access to fundamental properties of biological matter as well as of physical materials. Until the end of the twentieth century that was mainly practiced with-and limited in performance by-the continuous flux of neutrons from ageing nuclear reactors (e.g. the Institut Laue-Langevin (ILL), the flagship of neutron research in Europe and in the world) [1]). Looking forward to the following two decades, an OECD report published in 1998 diagnosed the foreseeable decrease of the number of operational facilities [2] and the need to progress in performance. Considering the high scientific interest and the increasing importance of the subject for society at large, the report concluded by strongly recommending the construction of next generation neutron sources in America, Europe and Asia. Pulsed spallation neutron sources (SNS) using a proton beam power exceeding 1 MW were specifically mentioned as the most interesting high performance facilities in the future landscape of neutron laboratories.The USA was the first country to follow this advice by building the SNS in the Oak Ridge National Laboratory (ORNL) which started in 2006 [3, 4]. Japan followed in 2009 with the Japan Proton Accelerator Research Centre (J-PARC) in Tokai [5,6]. In Europe, the subject was part of a concerted effort to further develop the European world-leading largescale research infrastructures suite. In 2003, the European Strategy Forum for Research Infrastructures (ESFRI), set up by the Research Ministries of the Member States and associated countries, concluded that a 5 MW long-pulse, single target station layout with nominally 22 'public' instruments was the optimum technical reference design for an European Spallation Source (ESS) that would meet the needs of the European science community in the second quarter of the century [7].Six years later, in 2009, it materialised in a real project with the adoption of the site of Lund (Sweden). A preconstruction phase followed until the end of 2013 during which the design was finalised [8]. Construction then started with the first neutron beams planned to be available in 2019, and the ESS facility to be operational at full performance in 2025.2 Description 2.1 Principle and specifics. The high level parameters of ESS are shown in table 1. As at SNS and J-PARC, neutrons at ESS are produced by spallation, when the 2 GeV protons hit the meta...