In follow-up studies on chronic disease cohorts, individuals are often observed at irregular visit times that may be related to their previous disease history and other factors. This can produce bias in standard methods of estimation. Working in the context of multistate models, we consider a method of nonparametric estimation for state occupancy probabilities that adjusts for dependent follow-up through the use of inverse-intensity-of-visit weighted estimating functions and smoothing. The methodology is applied to the estimation of viral rebound probabilities in the Canadian Observational Cohort on HIV-positive persons. Copyright © 2016 John Wiley & Sons, Ltd.