There is a growing need to implement modern technologies, such as digital twinning, to improve the efficiency of transport fleet maintenance processes and maintain company operational capacity at the required level. A comprehensive review of the existing literature is conducted to address this, offering an up-to-date analysis of relevant content in this field. The methodology employed is a systematic literature review using the Primo multi-search tool, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The selection criteria focused on English studies published between 2012 and 2024, resulting in 201 highly relevant papers. These papers were categorized into seven groups: (a) air transportation, (b) railway transportation, (c) land transportation (road), (d) in-house logistics, (e) water and intermodal transportation, (f) supply chain operation, and (g) other applications. A notable strength of this study is its use of diverse scientific databases facilitated by the multi-search tool. Additionally, a bibliometric analysis was performed, revealing the evolution of DT applications over the past decade and identifying key areas such as predictive maintenance, condition monitoring, and decision-making processes. This study highlights the varied levels of adoption across different transport sectors and underscores promising areas for future development, particularly in underrepresented domains like supply chains and water transport. Additionally, this paper identifies significant research gaps, including integration challenges, real-time data processing, and standardization needs. Future research directions are proposed, focusing on enhancing predictive diagnostics, automating maintenance processes, and optimizing inventory management. This study also outlines a framework for DT in transportation systems, detailing key components and functionalities essential for effective maintenance management. The findings provide a roadmap for future innovations and improvements in DT applications within the transportation industry. This study ends with conclusions and future research directions.