Providing food, timber, energy, housing, and other goods and services, while maintaining ecosystem functions and biodiversity that underpin their sustainable supply, is one of the great challenges of our time. Understanding the drivers of land-use change and how policies can alter land-use change will be critical to meeting this challenge. Here we project land-use change in the contiguous United States to 2051 under two plausible baseline trajectories of economic conditions to illustrate how differences in underlying market forces can have large impacts on land-use with cascading effects on ecosystem services and wildlife habitat. We project a large increase in croplands (28.2 million ha) under a scenario with high crop demand mirroring conditions starting in 2007, compared with a loss of cropland (11.2 million ha) mirroring conditions in the 1990s. Projected land-use changes result in increases in carbon storage, timber production, food production from increased yields, and >10% decreases in habitat for 25% of modeled species. We also analyze policy alternatives designed to encourage forest cover and natural landscapes and reduce urban expansion. Although these policy scenarios modify baseline land-use patterns, they do not reverse powerful underlying trends. Policy interventions need to be aggressive to significantly alter underlying land-use change trends and shift the trajectory of ecosystem service provision.econometric model | incentives | at-risk birds | game species | amphibians L and-use change can greatly alter the provision of ecosystem services. Globally, the conversion of native grasslands, forests, and wetlands into croplands, tree plantations, and developed areas has led to vast increases in production of food, timber, housing, and other commodities but at the cost of reductions in many ecosystem services and biodiversity (1). Although recent land-use change in the United States has not been as rapid as in the tropics, it has been significant. The area of croplands has decreased and forests and urban areas have expanded since World War II (2). For example, forest lands in the contiguous United States expanded by 5.7 million acres between 1982 and 2007. However, basic estimates of net land-use change often hide more complex dynamics. More than 30 million acres transitioned into or out of forest between 1982 and 2007 (3). Such transitions alter landscape patterns and ecosystem functions, both of which affect the provision of ecosystem services.We use an econometric model to predict spatially explicit landuse change across the contiguous United States from 2001 to 2051. The model estimates the probability of conversion among major land-use categories (cropland, pasture, forest, range, and urban) based on observations of past land-use change, characteristics of land parcels, and economic returns, while accounting for endogenous feedbacks from the policies into commodity prices. A key advantage of this approach is that it allows us to simulate the effects of future policies that modify the relative ret...