Background
Females have been historically excluded from biomedical research due in part to the documented presumption that results with male subjects will generalize effectively to females. This has been justified in part by the assumption that ovarian rhythms will increase the overall variance of pooled random samples. But not all variance in samples is random. Human biometrics are continuously changing in response to stimuli and biological rhythms; single measurements taken sporadically do not easily support exploration of variance across time scales. Recently we reported that in mice, core body temperature measured longitudinally shows higher variance in males than cycling females, both within and across individuals at multiple time scales.
Methods
Here, we explore longitudinal human distal body temperature, measured by a wearable sensor device (Oura Ring), for 6 months in females and males ranging in age from 20 to 79 years. In this study, we did not limit the comparisons to female versus male, but instead we developed a method for categorizing individuals as cyclic or acyclic depending on the presence of a roughly monthly pattern to their nightly temperature. We then compared structure and variance across time scales using multiple standard instruments.
Results
Sex differences exist as expected, but across multiple statistical comparisons and timescales, there was no one group that consistently exceeded the others in variance. When variability was assessed across time, females, whether or not their temperature contained monthly cycles, did not significantly differ from males both on daily and monthly time scales.
Conclusions
These findings contradict the viewpoint that human females are too variable across menstrual cycles to include in biomedical research. Longitudinal temperature of females does not accumulate greater measurement error over time than do males and the majority of unexplained variance is within sex category, not between them.