2020
DOI: 10.1007/978-3-030-61656-4_32
|View full text |Cite
|
Sign up to set email alerts
|

Methods for Forecasting Nonlinear Non-stationary Processes in Machine Learning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
3
2
1

Relationship

2
4

Authors

Journals

citations
Cited by 7 publications
(5 citation statements)
references
References 17 publications
0
3
0
2
Order By: Relevance
“…Various non-linear and non-stationary time series forecasting methods presented in the literature are considered and classified based on how they are applied to predict time series data for real-world problems [1,2], [3,8], [9,10], [11,12]. Prediction methods can be classified based on prerequisites or approaches to overcome non-stationarity and nonlinearity, as they assume the following features: a known trend shape, piecewise stationarity of signals, progressively varying parameters, or decomposability of a signal into stationary segments in the transformed domain, and they are either parametric or non-parametric, depending on whether the predictor takes a certain form or is built solely in accordance with the data (for example, the number of latent variables may vary).…”
Section: Analysis Of Literary Datamentioning
confidence: 99%
See 1 more Smart Citation
“…Various non-linear and non-stationary time series forecasting methods presented in the literature are considered and classified based on how they are applied to predict time series data for real-world problems [1,2], [3,8], [9,10], [11,12]. Prediction methods can be classified based on prerequisites or approaches to overcome non-stationarity and nonlinearity, as they assume the following features: a known trend shape, piecewise stationarity of signals, progressively varying parameters, or decomposability of a signal into stationary segments in the transformed domain, and they are either parametric or non-parametric, depending on whether the predictor takes a certain form or is built solely in accordance with the data (for example, the number of latent variables may vary).…”
Section: Analysis Of Literary Datamentioning
confidence: 99%
“…Forecasting of complex systems is one of the important areas of modern science of data analysis and processing [1,2], [3]. One of the most developed and researched areas is forecasting based on time series.…”
Section: Introductionmentioning
confidence: 99%
“…If the filling of gaps is performed using a regression model, for example, AR(p), it makes sense to analyze the quality of the model, which will be built on a sample of filled gaps [4][5][6]. To do this, it is possible to use the following criterion:…”
Section: Fig 9 Distribution Of a Discrete Variable Before And After Filling In The Gapsmentioning
confidence: 99%
“…Каппа -це показник, який порівнює спостережувану точність з очікуваною точністю (випадковий шанс). Формальне визначення F-заходи і Каппи [14]:…”
Section: застосування розробленої методології класифікаціїunclassified
“…Відгук -це міра повноти, яка являє собою співвідношення між кількістю правильно прогнозованих значень і загальною кількістю релевантних значень. Вони розраховуються з використанням значень істинно позитивної швидкості, непозитивної швидкості і помилково негативної швидкості в результатах прогнозування.Робоча характеристика приймача (ROC)[14] може використовуватися як ще одна метрика, яка також включає частоту справжніх позитивних і помилкових спрацьовувань для оцінки якості вихідних даних класифікатора. Якщо TP, FP і FN позначають справжні спрацьовування, помилкові спрацьовування і помилкові заперечення, то формальне визначення точності і відкликання буде[14]: -точність;  -відгук.…”
unclassified