Agrobacterium tumefaciens synthesizes polyphosphate (polyP) in the form of one or two polyP granules per cell during growth. The A. tumefaciens genome codes for two polyphosphate kinase genes, ppk1AT and ppk2AT, of which only ppk1AT is essential for polyP granule formation in vivo. Biochemical characterization of the purified PPK1AT and PPK2AT proteins revealed a higher substrate specificity of PPK1AT (in particular for adenine nucleotides) than for PPK2AT. In contrast, PPK2AT accepted all nucleotides at comparable rates. Most interestingly, PPK2AT catalyzed also the formation of tetra-, penta-, hexa-, hepta-, and octa-phosphorylated nucleosides from guanine, cytosine, desoxy-thymidine, and uridine nucleotides and even nona-phosphorylated adenosine. Our data—in combination with in vivo results—suggest that PPK1AT is important for the formation of polyP whereas PPK2AT has the function to replenish nucleoside triphosphate pools during times of enhanced demand. The potential physiological function(s) of the detected oligophosphorylated nucleotides await clarification.
Key points
•PPK1ATand PPK2AThave different substrate specificities,
•PPK2ATis a subgroup 1 member of PPK2s,
•PPK2ATcatalyzes the formation of polyphosphorylated nucleosides