2012
DOI: 10.1002/9781118391686
|View full text |Cite
|
Sign up to set email alerts
|

Methods of Multivariate Analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
412
0
29

Year Published

2014
2014
2020
2020

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 593 publications
(442 citation statements)
references
References 0 publications
1
412
0
29
Order By: Relevance
“…They are al- (Rencher, Christensen 2012). Pillai's trace is a positivevalued statistic in which increasing values indicate effects that contribute more to the model.…”
Section: Resultsmentioning
confidence: 99%
“…They are al- (Rencher, Christensen 2012). Pillai's trace is a positivevalued statistic in which increasing values indicate effects that contribute more to the model.…”
Section: Resultsmentioning
confidence: 99%
“…While these analyses provided good prediction because of inclusion of multipollutants (O3 of the same day, O3 of the previous day, PM2.5 of the same day, and PM2.5 of the previous day), they did not investigate the joint effect of the risk factors on both outcomes. This study allowed us to see how CVD and COPD ER visits are related once control variables have been included (through the examination of the correlation of the residuals), and that we can test the effect of ozone and PM2.5 both across CVD and COPD ER visits jointly [24]. Figure 4 gives a proposed decision tree for applying multivariate geostatistics in environmental epidemiology, which was conducted in this study.…”
Section: Resultsmentioning
confidence: 99%
“…Dado el gran número de variables involucradas en el análisis, se utilizó el método PCA (Principal Component Analysis) con el objetivo de redimensionar el conjunto inicial de variables a unos cuantos componentes principales que contendrán gran parte de su información (Rencher & Christensen, 2012). El PCA, propuesto por Pearson (1901) y por Hotelling (1933), permite encontrar aquellas combinaciones lineales -componentes-de un conjunto inicial de variables que re-distribuyen su varianza de tal manera que los primeros componentes contienen la mayor parte de su información.…”
Section: Análisis De Componentes Principalesunclassified
“…El CA (Cluster Analysis) permite identificar patrones en un conjunto de datos creando agrupaciones -clusters-cuyas observaciones u objetos poseen características similares a lo interno del grupo, pero diferentes a lo externo del mismo (Rencher & Christensen, 2012). Así, los cuatro componentes principales obtenidos en la sección anterior fueron sometidos al método de clusterización jerárquica propuesto por Ward (1963) con el objetivo de crear una tipología de productores basada tanto en la dotación de capital como en la tecnología productiva y distributiva que poseen.…”
Section: Análisis De Clustersunclassified