Numerical Simulation - Advanced Techniques for Science and Engineering 2023
DOI: 10.5772/intechopen.109366
|View full text |Cite
|
Sign up to set email alerts
|

Methods of the Perturbation Theory for Fundamental Solutions to the Generalization of the Fractional Laplaciane

Mykola Ivanovich Yaremenko

Abstract: We study the regularity properties of the solutions to the fractional Laplacian equation with perturbations. The Harnack inequality of a weak solution u∈WspRl to the fractional Laplacian problem is established, and the oscillation of the solution to the fractional Laplacian is estimated. We show that let 1≤p<∞ and s∈01, and let u∈Wsp be a weak solution to Lu=0inΩ, with the condition u=finRl\\Ω, where function f belongs to the Sobolev space WspRl. Then, the function u∈Wsp is locally Holder continuous and osc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?