The interface between the blood circulation and the neural tissue features unique characteristics which are embraced by the term ‘blood-brain barrier’ (BBB). The main functions of this barrier, namely maintenance of brain homeostasis, regulation of influx and efflux transport, and protection from harm, are determined by its specialized multicellular structure. Every constituent cell type makes an indispensible contribution to the BBB’s integrity. But, if one member of the BBB fails and as a result, the barrier breaks down, there can be dramatic consequences, and neuroinflammation and neurodegeneration can occur. In this Review we highlight recently gained mechanistic insights into the development and maintenance of the BBB. We then discuss how BBB disruption can cause or contribute to neurological disease. Finally, we examine how this knowledge can be used to explore new possibilities for BBB repair.