Adaptive optics (AO), when coupled to different imaging modalities, has enabled resolution of various cell types across the entire retinal depth in the living human eye. Extraction of information from retinal cells is optimal when their optical properties, structure, and physiology are matched to the unique capabilities of each imaging modality. Despite the earlier success of multimodal AO (mAO) approaches, the full capabilities of the individual imaging modalities were often diminished rather than enhanced when integrated into multimodal platforms. Furthermore, many mAO designs added unnecessary complexity, making clinical translation difficult. In this study, we present a novel mAO system that combines two complementary approaches, scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT), in one instrument using a simplified optical design, flexible alternation of scanning modes, and independent focus control. The mAO system imaging performance was demonstrated by visualization of cells in their mosaic arrangement across the full depth of the retina in three human subjects, including microglia, nerve fiber bundles, retinal ganglion cells and axons, and capillaries in the inner retina and foveal cones, peripheral rods, and retinal pigment epithelial cells in the outer retina. Multimodal AO is a powerful tool to capture the most complete picture of retinal health.