This study demonstrates the protective potential of hydroxytyrosol (HT), an olive oil phenol, against methylmercury (MeHg)-induced neurotoxicity using IMR-32 human neuroblastoma cell line. HT inhibited MeHg-induced cytotoxicity and genotoxicity as confirmed by MTT, micronucleus, and comet assays. Cells preconditioned with HT showed reduction of MeHg-induced cellular oxidative stress along with the maintenance of glutathione, superoxide dismutase, glutathione-S-tranferase, and catalase. Fluorescence microscopy and DNA ladder assays indicated the inhibitory effect of HT against MeHg-induced apoptosis, which was further established by Western blotting. An effective concentration of 5 µM HT caused downregulation of p53, bax, cytochrome c, and caspase 3 and upregulation of prosurvival proteins including nuclear factor erythroid 2-related factor 2 (Nrf2) and metallothionein. This work indicates the cytoprotective potential of HT against MeHg-induced toxicity primarily by the lowering of oxidative stress, which may be endorsed to its antigenotoxic and antiapoptotic potential, in addition to its free radical scavenging ability. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1264-1275, 2016.