2023
DOI: 10.34312/jjom.v5i1.15869
|View full text |Cite
|
Sign up to set email alerts
|

Metode AdaBoost dan Random Forest untuk Prediksi Peserta JKN-KIS yang Menunggak

Abstract: The contribution of participants, employers, and/or the government is one of the most important things in the National Health Insurance Program-Healthy Indonesia Card (JKN-KIS) implementation. All Indonesian residents were required to participate in the JKN-KIS program which is divided into four types of participation, one of which is Non-Wage Recipient Participants (PBPU) whose contributions are paid independently. However, based on December 2021 data, 60% of PBPU participants were late in paying monthly unti… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 10 publications
0
1
0
1
Order By: Relevance
“…Predictions for each model are combined, usually through voting, to determine a class label. New data predictions are based on majority weights [19].…”
Section: Algorithm Adaboostmentioning
confidence: 99%
“…Predictions for each model are combined, usually through voting, to determine a class label. New data predictions are based on majority weights [19].…”
Section: Algorithm Adaboostmentioning
confidence: 99%
“…Pada tahap pemodelan, model dibangun dan diperoleh hasil prediksi, sedangkan tahap evaluasi model digunakan untuk mengukur kinerja model. Berikut langkah-langkah analisis data: matrix adalah tabulasi silang antara informasi kelas negative dan positive yang terdapat pada kelas prediksi dan kelas sebenarnya [12]. Kelas positif dalam penelitian ini adalah mahasiswa dengan status kelulusan tepat waktu.…”
Section: Metodeunclassified