1938
DOI: 10.1090/s0002-9947-1938-1501980-0
|View full text |Cite
|
Sign up to set email alerts
|

Metric spaces and positive definite functions

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

3
318
0
10

Year Published

1962
1962
2018
2018

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 617 publications
(331 citation statements)
references
References 9 publications
3
318
0
10
Order By: Relevance
“…A proof of this fact can be found in reference [11]. Alternatively, this can be proved starting from some classical results of harmonic analysis due to Schoenberg [16], [17]. The basic property of the JSD that makes Schoenberg theorem applicable is that s JS X is a definite negative kernel, that is, for all finite collection of real number (ζ i ) i≤N and for all corresponding finite sets (x i ) i≤N of points in X + N , the implication…”
Section: Jensen-shannon Divergencementioning
confidence: 93%
“…A proof of this fact can be found in reference [11]. Alternatively, this can be proved starting from some classical results of harmonic analysis due to Schoenberg [16], [17]. The basic property of the JSD that makes Schoenberg theorem applicable is that s JS X is a definite negative kernel, that is, for all finite collection of real number (ζ i ) i≤N and for all corresponding finite sets (x i ) i≤N of points in X + N , the implication…”
Section: Jensen-shannon Divergencementioning
confidence: 93%
“…A proof of this last fact can be found in references [17,18]. Alternatively, this can be proved by using some results of harmonic analysis due to I. Schoenberg [19]. The basic fact that makes Schoenberg's theorem applicable to the classical JSD resides in that it is a definite negative kernel, that is, for all finite collection of real numbers (c i ) i≤N , and for all corresponding probability distributions…”
Section: Classical Jensen-shannon Divergence and Its Quantum Extementioning
confidence: 99%
“…Отметим простые факты, связанные с изложенным. Описание функций с указанным выше свойством восходит к работе Шенберга [4], этот круг вопросов рассмотрен также в работе [5]. Из результатов этих работ выте-кает, что указанные функции допускают представление…”
Section: случайный процессunclassified