ABSTRACTBackgroundRNA modifications play central roles in cellular fate and differentiation. These features have placed the epitranscriptome in the forefront of developmental biology and cancer research. However, the machinery responsible for placing, removing and recognizing more than 170 RNA modifications remains largely uncharacterized and poorly annotated, and we currently lack integrative studies that identify which RNA modification–related proteins (RMPs) may be dysregulated in each cancer type.ResultsHere we have performed a comprehensive annotation and evolutionary analysis of human RMPs as well as an integrative analysis of their expression patterns across 32 tissues, 10 species and 13,358 paired tumor-normal human samples. Our analysis reveals an unanticipated heterogeneity of RMP expression patterns across mammalian tissues, with a vast proportion of duplicated enzymes displaying testis-specific expression, suggesting a key role for RNA modifications in sperm formation and possibly intergenerational inheritance. Moreover, through the analysis of paired tumor-normal human samples we uncover many RMPs that are dysregulated in various types of cancer, and whose expression levels are predictive of cancer progression. Surprisingly, we find that several commonly studied RNA modification enzymes such as METTL3 or FTO, are not significantly up-regulated in most cancer types, once the sample is properly scaled and normalized to the full dataset, whereas several less-characterized RMPs, such as LAGE3 and HENMT1, are dysregulated in many cancers.ConclusionsOur analyses reveal an unanticipated heterogeneity in the expression patterns of RMPs across mammalian tissues, and uncover a large proportion of dysregulated RMPs in multiple cancer types. We provide novel targets for future cancer research studies targeting the human epitranscriptome, as well as foundations to understand cell type-specific behaviours that are orchestrated by RNA modifications.