MFGAN: Multimodal Fusion for Industrial Anomaly Detection Using Attention-Based Autoencoder and Generative Adversarial Network
Xinji Qu,
Zhuo Liu,
Chase Q. Wu
et al.
Abstract:Anomaly detection plays a critical role in ensuring safe, smooth, and efficient operation of machinery and equipment in industrial environments. With the wide deployment of multimodal sensors and the rapid development of Internet of Things (IoT), the data generated in modern industrial production has become increasingly diverse and complex. However, traditional methods for anomaly detection based on a single data source cannot fully utilize multimodal data to capture anomalies in industrial systems. To address… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.