There is growing interest in applying phase field methods as quantitative tools in materials discovery and development. However, large driving forces, common in many materials systems, lead to unstable phase field profiles, thus requiring fine spatial and temporal resolution. This demands more computational resources, limits the ability to simulate systems with a suitable size, and deteriorates the capability of quantitative prediction. Here, we develop a strategy to map the driving force to a constant perpendicular to the interface. Together with the third-order interpolation function, we find a stable phase field profile that is independent of the magnitude of the driving force. The power of this approach is illustrated using three models. We demonstrate that by using the driving force extension method, it is possible to employ a grid size orders of magnitude larger than traditional methods. This approach is general and should apply to many other phase field models.