Infection and insufficient osteointegration are the main causes of orthopedic implant failure. Furthermore, activating favorable inflammation response is vital to the fast osteointegration of implants. Therefore, endowing the implants with multifunctions (antibacterial, anti-inflammation, and pro-osteointegration) is a promising strategy to improve the performance of orthopedic implants. In this study, a Zn-contained polydopamine (PDA) film was fabricated on AZ31 alloy. The film possessed a stable Zn ion release in 14 days. The results of electrochemical analysis implied the favorable corrosion protection of the film, and thus, leading to a suitable hemolysis ratio (below 1%). The in vitro antibacterial assessment revealed that the film exhibited excellent resistance against Staphylococcus aureus (nearly 100%), which can be ascribed to the release of Zn ions. The cell-culture evaluation revealed that the extract of Zn-contained PDA-coated sample can activate RAW264.7 polarization to an anti-inflammatory phenotype, as well as enhance the osteogenic differentiation ability of MC3T3-E1. Additionally, the femoral osteomyelitis model indicated that the as-prepared film had a high antibacterial capability at early stage of the implantation, and showed better osteogenesis and osteointegration after 8 weeks of implantation. With favorable antibacterial, anti-inflammation, and pro-osteogenesis abilities, the novel designed Zn-contained PDA film is promising to be used in Mg-based orthopedic implants.