In this study, the synthesis of a layered double hydroxide (LDH) composite with graphene quantum dots (GQDs) and its utilization for the development of a dispersive solid-phase extraction procedure are described. To this end, a carbonate-free Mg-Al LDH was synthesized. The development of the composite material made feasible the use of GQDs in a sample preparation procedure, while the incorporation of the GQDs in the LDH structure resulted in an 80% increase in extraction efficiency, compared to the bare LDH. As a proof of concept, the composite material was used for the development of an analytical method for the extraction, and preconcentration, of benzophenones, phenols, and parabens in lake water using high-performance liquid chromatography, coupled to a diode array detector. The analytical method exhibits low limits of quantification (0.10–1.33 μg L−1), good recoveries (92–100%), and satisfactory enrichment factors (169–186). Due to the abovementioned merits, the easy synthesis and simple extraction, the developed method can be used for the routine analysis of the target compounds.