In this article, the impact of MHD Casson Nanofluid boundary layer flow, over an inclined extending surface with thermal radiation, heat source/sink, Soret and Dufour, is scrutinized. The model used in this study is based on the Buongiorno model of the thermal efficiencies of the fluid flows in the presence of Brownian motion and thermophoresis properties. The non-linear problem for Casson Nanofluid flow over an inclined channel is modeled to gain knowledge on the heat and mass exchange phenomenon, by considering important flow parameters of the intensified boundary layer. The governing non-linear partial differential equations are changed to ordinary differential equations and are afterward illustrated numerically by the homotopy analysis method (HAM). Numerical and graphical results are also presented in tables and graphs. It has been noticed that increasing the inclination parameter reduces the amount of friction experienced by the surface, but it has the opposite effect on the Nusselt number and the Sherwood number. In the concentration field, the inclination parameter reveals a decreasing trend, in contrast to the chemical reaction rate parameter, which reveals an increasing trend in the opposite direction. Likewise, the present results are noticed to be in an excellent agreement with those offered previously by other authors. Finally, some of the physical parameters in this study, which can serve as improvement factors for heat mass transfer and thermophysical characteristics, make nanofluids premium candidates for important future engineering applications