In the present study, the natural convective heat transfer in the turbulent flow of water/CuO nanofluid with volumetric radiation and magnetic field inside a tall enclosure has been numerically investigated. The thermophysical properties of nanofluid have been considered variable with temperature and the effects of Brownian motion of nanoparticles have been considered. The main objective of this work is an investigation of the effect of using water/CuO nanofluid and presence of magnetic field on turbulent natural convection in three types of enclosures (vertical, inclined, and horizontal) by considering the volumetric radiation. The governing equations on turbulent flow domain under the influence of the magnetic field and by considering the combination of volumetric radiation and natural convection have been solved by a coupled algorithm. For validating the present research, a comparison has been carried out with the laminar natural convection flow under the influence of the magnetic field and radiation effects and also, the natural turbulent convection flow of previous studies and a proper coincidence has been achieved. The results indicated that by increasing volume fraction and Hartmann number the average Nusselt number enhances and reduces, respectively. By adding 1% CuO nanoparticles to the base fluid, heat transfer improves from 10.59% to 17.05%. However, by increasing the volume fraction from 1% to 4%, heat transfer improves from 1.35% to 4.90%. By increasing Hartmann number from 0 to 600, heat transfer reduces from 9.29% to 22.07%. Also, the results show that the ratio of deviation angle of the enclosure to the horizontal surface has considerable effects on heat transfer performance. Therefore, in similar conditions, the inclined enclosure with a deviation angle of 45° compared to the vertical and horizontal enclosure has better thermal performance.