An unsteady magnetohydrodynamic (MHD) heat transfer two-fluid flow of ionized gases through a horizontal channel between parallel non-conducting plates, by taking Hall currents into account is studied. The governing partial differential equations that describe the flow and heat transfer under the adopted conditions are solved for the velocity and temperature distributions by a regular perturbation technique. Profiles for the velocity and temperature distributions as well the rates of heat transfer coefficient are presented graphically, and a parametric study is performed. The results reveal that the combined effects of the Hartmann number, Hall parameter, and the ratios of viscosities, heights, electrical and thermal conductivities have a significant impact on an unsteady MHD heat transfer two-ionized fluid flow characteristics.