When mission-critical applications are provided over a network, high availability is required in addition to a low delay. This paper proposes a multi-homing network design model, named MHND, that achieves low delay, high availability, and the order guarantee of events. MHND maintains the event occurrence order with a multi-homing configuration using conservative synchronization. We formulate MHND as an integer linear programming problem to minimize the delay. We prove that the distributed server allocation problem with MHND is NP-complete. Numerical results indicate that, as a multi-homing number, which is the number of servers to which each user belongs, increases, the availability increases while increasing the delay. Noteworthy, two or more multi-homing can achieve approximately an order of magnitude higher availability compared to that of conventional single-homing at the expense of a delay increase up to two times. By using MHND, flexible network design is achieved based on the acceptable delay in service and the required availability.