Background and Aims:
Expression of genes encoding enzymes involved in glycerolipid and monoacylglycerol pathways in specific brain regions is poorly known and their alterations in insulin resistance (IR) and type 2 diabetes (T2D) remain unreported. We determined the mRNA levels of enzymes involved in glycerolipid synthesis in specific regions of the mouse brain and their changes in two models of severe IR, the lipodystrophic Agpat2−/− and the obese Leprdb/db mice.
Methods
Cerebral cortex, hypothalamus, hippocampus and cerebellum were dissected from adult Agpat2−/− mice, Leprdb/db mice and their respective wild type littermates. Total RNA was isolated and the relative mRNA abundance of enzymes was determined by RT-qPCR.
Results
GPAT1, AGPAT1-4, LIPIN1/2, DGAT1/2 and MOGAT1 mRNAs were detected in all studied brain regions, whereas GPAT2, LIPIN3 and MOGAT2 were undetectable. Abundance of GPAT1, AGPAT1, AGPAT2, AGPAT4, LIPIN1, and MOGAT1, was higher in the hypothalamus. AGPAT3 and DGAT1 were higher in cortex and cerebellum, and LIPIN2 and DGAT2 were higher in cortex and hippocampus. In Agpat2−/− mice, LIPIN1 levels were increased in all the brain regions. By contrast, GPAT1 and AGPAT4 in hypothalamus, AGPAT3 in hippocampus and hypothalamus, and MOGAT1 in cortex, hypothalamus and cerebellum were lower in Agpat2−/− mice. Leprdb/db mice showed fewer and milder changes, with increased levels of GPAT1 and LIPIN1 in cerebellum, and AGPAT3 in hypothalamus.
Conclusions
Enzymes involved in glycerolipids synthesis are differentially expressed across regions of the mouse brain and IR and T2D determine altered gene expression of these enzymes in the mouse brain.