A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.ACCEPTED MANUSCRIPT A C C E P T E D M A N U S C R I P T
AbstractThe k-Nearest Neighbors classifier is a simple yet effective widely renowned method in data mining. The actual application of this model in the big data domain is not feasible due to time and memory restrictions. Several distributed alternatives based on MapReduce have been proposed to enable this method to handle large-scale data. However, their performance can be further improved with new designs that fit with newly arising technologies.In this work we provide a new solution to perform an exact k-nearest neighbor classification based on Spark. We take advantage of its in-memory operations to classify big amounts of unseen cases against a big training dataset. The map phase computes the k-nearest neighbors in different training data splits. Afterwards, multiple reducers process the definitive neighbors from the list obtained in the map phase. The key point of this proposal lies on the management of the test set, keeping it in memory when possible. Otherwise, it is split into a minimum number of pieces, applying a MapReduce per chunk, using the caching skills of Spark to reuse the previously partitioned * Corresponding author. ACCEPTED MANUSCRIPT A C C E P T E D M A N U S C R I P T training set. In our experiments we study the differences between Hadoop and Spark implementations with datasets up to 11 million instances, showing the scaling-up capabilities of the proposed approach. As a result of this work an open-source Spark package is available.