Micro-Doppler is a unique characteristic of targets with micro-motions, which can provide significant information for target classification and recognition. However, the monostatic radar has the shortcoming of only obtaining the radial micro-motion characteristics. Although the vortex-electromagnetic-wave-based radar has the potential to obtain real micro-motion parameters, it has a high dependence on the mode number and purity of the orbital angular momentum, which greatly restricts its application in the micro-motion parameter extraction. To overcome the above problems, a new radar configuration based on the rotating interference antenna is proposed in this paper. Through the interference processing of the micro-Doppler curves of the rotating and fixed antenna, the curves containing the real micro-motion information of the target can be obtained. Then the real micro-motion characteristics of the spinning target can be reconstructed by the orthogonal matching pursuit algorithm. The effectiveness and robustness of the proposed method are validated by simulations.