In the secondary side of pressurized water reactors (PWRs), the main corrosion product accumulated on the steam generator (SG) tubes is magnetite, which has a porous structure. The purpose of this work is to simulate the porous magnetite deposited to the SG tubes using a loop system. We newly developed a circulating loop system for a porous magnetite deposition test. A test section was designed as a single hydraulic flow channel, and a cartridge heater was fabricated and mounted into a commercial SG tube to provide an equal heating source for the primary water. After the deposition test, the simulated magnetite deposits were characterized for comparison to real SG tube deposits collected from an operating PWR plant. The magnetite deposits produced using the loop system were appropriate for simulating the real SG tube deposits because the particle characteristics, phase, and porous morphology are closely similar to those of real deposit samples. Using the loop system, the chemical impurities such as Na and Cl can be easily concentrated within the pores of the simulated magnetite deposits. These simulated magnetite samples are expected to be widely utilized in various research fields such as the heat transfer degradation and magnetite accelerated corrosion of SG tubes.