Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Microfluidics, the science and technology of manipulating fluids in microscale channels, offers numerous advantages, such as low energy consumption, compact device size, precise control, fast reaction, and enhanced portability. These benefits have led to applications in biomedical assays, disease diagnostics, drug discovery, neuroscience, and so on. Fluid flow within microfluidic channels is typically in the laminar flow region, which is characterized by low Reynolds numbers but brings the challenge of efficient mixing of fluids. Periodic flows are time‐dependent fluid flows, featuring repetitive patterns that can significantly improve fluid mixing and extend the effective length of microchannels for submicron and nanoparticle manipulation. Besides, periodic flow is crucial in organ‐on‐a‐chip (OoC) for accurately modeling physiological processes, advancing disease understanding, drug development, and personalized medicine. Various techniques for generating periodic flows have been reported, including syringe pumps, peristalsis, and actuation based on electric, magnetic, acoustic, mechanical, pneumatic, and fluidic forces, yet comprehensive reviews on this topic remain limited. This paper aims to provide a comprehensive review of periodic flows in microfluidics, from fundamental mechanisms to generation techniques and applications. The challenges and future perspectives are also discussed to exploit the potential of periodic flows in microfluidics.
Microfluidics, the science and technology of manipulating fluids in microscale channels, offers numerous advantages, such as low energy consumption, compact device size, precise control, fast reaction, and enhanced portability. These benefits have led to applications in biomedical assays, disease diagnostics, drug discovery, neuroscience, and so on. Fluid flow within microfluidic channels is typically in the laminar flow region, which is characterized by low Reynolds numbers but brings the challenge of efficient mixing of fluids. Periodic flows are time‐dependent fluid flows, featuring repetitive patterns that can significantly improve fluid mixing and extend the effective length of microchannels for submicron and nanoparticle manipulation. Besides, periodic flow is crucial in organ‐on‐a‐chip (OoC) for accurately modeling physiological processes, advancing disease understanding, drug development, and personalized medicine. Various techniques for generating periodic flows have been reported, including syringe pumps, peristalsis, and actuation based on electric, magnetic, acoustic, mechanical, pneumatic, and fluidic forces, yet comprehensive reviews on this topic remain limited. This paper aims to provide a comprehensive review of periodic flows in microfluidics, from fundamental mechanisms to generation techniques and applications. The challenges and future perspectives are also discussed to exploit the potential of periodic flows in microfluidics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.