Abstract
Porous buffer layers for anode-supported solid oxide fuel cells (SOFCs) have been investigated for many years with different thicknesses of the buffer layer in each study. In this work, micro-tubular SOFCs having samarium-doped ceria (SDC) and gadolinium-doped ceria (GDC) buffer layers are compared using the current-voltage technique, electrochemical impedance spectroscopy, scanning electron microscopy and energy dispersive x-ray spectroscopy. The thickness of the porous SDC and GDC buffer layer is investigated systematically with the thickness varying between 0.3–2.0 µm. The power density varies between 212 and 1,004 mW.cm−2 for samples having different SDC buffer layer thickness. Comparable changes occur for the SOFCs with a GDC buffer layer, but less variation in polarization losses resulted. Variation in electrochemical performance varies due to changes in ohmic resistance, cathode activation polarization, and interfacial reactions between the cathode and electrolyte materials.