The first ever nanofibers produced by the electrospinning of polyvinyl alcohol (PVA) and Spirulina platensis extracts are presented in this article. Spirulina platensis extracts were obtained by ultrasound-assisted extraction (UAE) using two different solvents: a glucose/glycerol-based natural deep eutectic solvent (NADES) and water. Through spectrophotometry analysis, it was possible to determine the pigment yield of the extractions for both extracts: phycocyanin = 3.79 ± 0.05 mg/g of dry biomass (DB); chlorophylls = 0.24 ± 0.05 mg/g DB; carotenoids = 0.13 ± 0.03 mg/g DB for the NADES/Spirulina extracts, and phycocyanin = 0.001 ± 0.0005 mg/g DB; chlorophylls = 0.10 ± 0.05 mg/g DB; carotenoids = 0.20 ± 0.05 mg/g DB for water/Spirulina extracts. Emulsions were formed by mixing the microalgae extracts in PVA (9%, w/v) at different concentrations: 5, 20, 40, and 50% (v/v). Electrospinning was carried out at the following conditions: 13 cm of distance to collector; 80 kV of applied voltage; and 85 rpm of electrode rotation. After the nanofibers were collected, they were checked under a scanning electron microscope (SEM). ImageJ was also used to determine fiber diameter and frequency. SEM results showed the formation of nanofibers for 5 and 20% (v/v) of NADES/Spirulina extract content in the electrospinning emulsions, presenting diameters of 423.52 ± 142.61 nm and 680.54 ± 271.92 nm, respectively. FTIR confirmed the presence of the NADES extracts in the nanofibers produced. Overall, the nanofibers produced showed promising antioxidant activities, with the NADES/Spirulina- and PVA-based nanofibers displaying the highest antioxidant activity (47%). The highest antimicrobial activity (89.26%) was also obtained by the NADES/Spirulina and PVA nanofibers (20%, v/v). Principal Component Analysis (PCA) revealed positive correlations between both the antioxidant and antimicrobial activities of the electrospun nanofibers, and extract content in the emulsions. Moreover, PCA also indicated positive correlations between the viscosity and conductivity of the emulsions and the diameter of the nanofibers produced.