. Involvement of mTOR kinase in cytokine dependent microglial activation and cell proliferation. Biochemical Pharmacology, Elsevier, 2009, 78 (9) This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. It is now evident that the mTOR signaling pathway regulates different functions in the innate immune system, contributing to macrophage activation. More recently, mTOR has been found to enhance the survival of EOC2 microglia during oxygen-glucose deprivation and increase NO synthase 2 (NOS2) expression during hypoxia in BV2 microglial cell line, thus suggesting an involvement in microglial proinflammatory activation. In the present study, we detected mTOR activation in response to two different stimuli, namely LPS and a mixture of cytokines, in primary cultures of rat cortical microglia. Moreover, mTOR inhibitors reduced NOS activity and NOS2 expression induced by cytokines, but not those induced by LPS. The mTOR inhibitor RAD001, in combination with cytokines, also reduced microglial proliferation and the intracellular levels of cyclooxygenase. Under basal conditions mTOR inhibition significantly reduced microglial viability. Interestingly, mTOR inhibitors did not display any relevant effect on astrocyte NOS2 activity or cell viability. In conclusion, mTOR selectively controls microglial activation in response to proinflammatory cytokines and appears to play a crucial role in microglial viability; thus these drugs may be a useful pharmacological tool to reduce neuroinflammation.