Background
As a chronic mountain sickness(CMS) with the highest incidence and the greatest harm, the pathogenesis of high altitude polycythemia (HAPC) is still not fully understood.
Methods
37 HAPC patients and 42 healthy subjects were selected from plateau, and peripheral venous blood samples were collected for transcriptome sequencing on Illumina NovaSeq platform. The sequenced data were analyzed by bioinformatics and phenotypic association analysis.
Results
The results showed significant differences in multiple clinical indicators including RBC and HGB et al. existed between HAPC and control. Based on the RNA-seq data, 550 genes with significant differential expression were identified in HAPC patients. GO and KEGG pathway enrichment analysis showed that the up-regulated genes were mainly enriched in processes such as erythrocyte differentiation and development and homeostasis of number of cells, while the down-regulated genes were mainly enriched in categories such as immunoglobulin production, classical pathway of complement activation and other biological processes. The coupling analysis of differential expression genes(DEGs) and pathological phenotypes revealed that 91 DEGs were in close correlation with in the phenotype of red blood cell volume distribution (width-CV and width-SD), and they were all up-regulated in HAPC and involved in the process of erythrocyte metabolism. Combined with the functional annotation of DEGs and literature survey, we found that the expression of several potential genes might be responsible for pathogenesis of HAPC. Besides, cell type deconvolution analysis result suggested that the changes in the number of some immune cell types was significantly lower in HAPC patients than control, implying the autoimmune level of HAPC patients was affected to a certain extent.
Conclusion
This study provides an important data source for understanding the pathogenesis and screening pathogenic genes of HAPC. We found for the first time that there was a significant correlation between HAPC and the pathological phenotype of width-CV and width-SD, wherein the enriched genes were all up-regulated expressed and involved in the process of erythrocyte metabolism. Although the role of these genes needs to be further studied, the candidate genes can provide a starting point for functionally pinning down the underlying mechanism of HAPC.