Abstract:The aluminium activated malate transporter (ALMT) gene family is named after the first member of the family identified in wheat (Triticum aestivum L.). The product of this gene controls resistance to aluminium (Al) toxicity. ALMT genes encode transmembrane proteins that function as anion channels and perform multiple functions involving the transport of organic anions (e.g., carboxylates) and inorganic anions in cells. They share a PF11744 domain and are classified in the Fusaric acid resistance protein-like superfamily, CL0307. The proteins typically have five to seven transmembrane regions in the N-terminal half and a long hydrophillic C-terminal tail but predictions of secondary structure vary. Although widely spread in plants, relatively little information is available on the roles performed by other members of this family. In this review, we summarized functions of ALMT gene families, including Al resistance, stomatal function, mineral nutrition, microbe interactions, fruit acidity, light response and seed development.