Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This review delves into the increasing interest in probiotics and paraprobiotics as a viable alternative to antibiotics in aquaculture, highlighting their potential to enhance fish health and prevent diseases. As the aquaculture industry continues its global expansion, addressing the challenges associated with disease outbreaks in high-density fish populations becomes imperative. The review underscores the promising role of probiotics and paraprobiotics as a sustainable strategy to mitigate these challenges. The diverse positive impacts of various probiotic strains such as Arthrobacter, Bacillus, Lactobacillus, Bifidobacterium, Clostridium, and others emphasize their roles in enhancing growth, resistance to diseases (including bacterial, viral, and parasitic infections), stress reduction, water quality management, and environmental sustainability. Challenges such as stability, host specificity, and regulatory considerations must be addressed to optimize the use of probiotics in aquaculture. Additionally, paraprobiotics, or non-viable microbial cells, present a safer alternative to the criticized antibiotics and even live probiotics in environments where microbial viability poses a risk. These inactivated cells retain the ability to modulate the immune system and improve gut health, offering a promising complementary approach to fish disease prevention. The review advocates for a systematic approach combining research, innovation, and collaboration to effectively integrate probiotics and paraprobiotics into fish farming practices. Furthermore, the mechanisms by which probiotics and paraprobiotics modulate gut microbiota, produce antimicrobial compounds, and strengthen fish’s immune system have been elucidated. Moreover, the practical applications of probiotics in fish farming, including optimal administration methods and the challenges and limitations faced by the industry, have been discussed. Emphasis on the importance of continued research to explore new probiotic and paraprobiotic strains and develop innovative delivery systems to ensure the sustainability of aquaculture has been discussed. By enhancing fish health, reducing the need for antibiotics, and improving water quality, probiotics, and paraprobiotics contribute to more sustainable and environmentally responsible aquaculture operations.
This review delves into the increasing interest in probiotics and paraprobiotics as a viable alternative to antibiotics in aquaculture, highlighting their potential to enhance fish health and prevent diseases. As the aquaculture industry continues its global expansion, addressing the challenges associated with disease outbreaks in high-density fish populations becomes imperative. The review underscores the promising role of probiotics and paraprobiotics as a sustainable strategy to mitigate these challenges. The diverse positive impacts of various probiotic strains such as Arthrobacter, Bacillus, Lactobacillus, Bifidobacterium, Clostridium, and others emphasize their roles in enhancing growth, resistance to diseases (including bacterial, viral, and parasitic infections), stress reduction, water quality management, and environmental sustainability. Challenges such as stability, host specificity, and regulatory considerations must be addressed to optimize the use of probiotics in aquaculture. Additionally, paraprobiotics, or non-viable microbial cells, present a safer alternative to the criticized antibiotics and even live probiotics in environments where microbial viability poses a risk. These inactivated cells retain the ability to modulate the immune system and improve gut health, offering a promising complementary approach to fish disease prevention. The review advocates for a systematic approach combining research, innovation, and collaboration to effectively integrate probiotics and paraprobiotics into fish farming practices. Furthermore, the mechanisms by which probiotics and paraprobiotics modulate gut microbiota, produce antimicrobial compounds, and strengthen fish’s immune system have been elucidated. Moreover, the practical applications of probiotics in fish farming, including optimal administration methods and the challenges and limitations faced by the industry, have been discussed. Emphasis on the importance of continued research to explore new probiotic and paraprobiotic strains and develop innovative delivery systems to ensure the sustainability of aquaculture has been discussed. By enhancing fish health, reducing the need for antibiotics, and improving water quality, probiotics, and paraprobiotics contribute to more sustainable and environmentally responsible aquaculture operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.