Abstract:The application of acidophilic sulfate-reducing bacteria (SRB) for the treatment of acidic mine water has been recently developed to integrate mine water remediation and selective biomineralization. The use of biogenic hydrogen sulfide (H 2 S) produced from the dissimilatory reduction of sulfate to fabricate valuable products such as metallic sulfide nanoparticles has potential applications in green chemistry. Here we report on the operation of a low-pH sulfidogenic bioreactor, inoculated with an anaerobic sediment obtained from an acid river in northern Chile, to recover copper via the production of copper sulfide nanoparticles using biogenic H 2 S. The laboratory-scale system was operated as a continuous flow mode for up to 100 days and the bioreactor pH was maintained by the automatic addition of a pH 2.2 influent liquor to compensate for protons consumed by biosulfidogenesis. The "clean" copper sulfide nanoparticles, produced in a two-step process using bacterially generated sulfide, were examined using transmission electron microscopy, dynamic light scattering, energy dispersive (X-ray) spectroscopy and UV-Vis spectroscopy. The results demonstrated a uniform nanoparticle size distribution with an average diameter of less than 50 nm. Overall, we demonstrated the production of biogenic H 2 S using a system designed for the treatment of acid mine water that holds potential for large-scale abiotic synthesis of copper sulfide nanoparticles.