The efficient removal of carbon (COD) and nitrogen (NH3-N) is vital to improving tailwater from municipal wastewater treatment plants. In this study, denitrification and decarburization bacteria with stable removal efficiencies were introduced into a membrane bioreactor (MBR) for 45 days of field experiments in a QJ Wastewater Treatment Plant (Hangzhou, China) to enhance carbon and nitrogen removal. After adding the decarbonization microorganisms into the denitrification reactor, COD removal increased from 31.2% to 80.2%, while compared to the same MBR with only denitrification microorganisms, the removal efficiency of NH3-N was greatly increased from 76.8% to 98.6%. The results of microbial analysis showed that the cooccurrence of Proteobacteria and Bacillus with high abundance and diverse bacteria, such as Chloroflexi, with autotrophic decarburization functions might account for the synchronous high removal efficiency for NH3-N and COD. This technology could provide a reference for industrial-scale wastewater treatment with the goal of simultaneous nitrogen and carbon removal.