The textile-dyeing industry is rated as one of the foremost industrial sectors that explodes large amount of pollutants to the environment. Reactive azo dye degradation, being a major constituent of these pollutants and perilous material, has been constantly receiving scientific attention. In textile industry, use of Remazole Brilliant Violet 5R (RBV5R) as reactive azo dyes is more frequent. Highly competent, RBV5R-degrading bacterial consortium VIE6 was developed from the soil of the Vatva Industrial Estate, Gujarat, India. Consortium VIE6 comprised of five bacterial strains Bacillus sp. DMB1, Staphylococcus sp. DMB2, Escherichia sp. DMB3, Enterococcus sp. DMB4, and Pseudomonas sp. DMB5. These strains convened a better decolorization efficiency between 200 and 1000 mg/L of dye concentration and were much stable at pH 6.5, 37 °C. Azoreductase, laccase, and lignin peroxidase activities of consortium showed significant variation throughout the degradation process indicating the different metabolic capabilities of the existing microflora. The community interactions and synergism were shown to facilitate the biotransformation of RBV5R by combination of various electron donors. Voltammograms revealed the variations in electron discharge properties which coincide with the dynamics of community derived using qPCR assays. The variation in catabolic capabilities of the individual strains was observed during active metabolism of RBV5R degradation pertaining to the aerobic and facultative functions.