Summary
A novel bioelectro‐Fenton microbial fuel cell (BEF‐MFC) cathode has been fabricated by modification of electrode using multi‐processing of nitrogen‐doped carbon (NDC)/nano‐Fe3O4 method with the aims of cost‐effectiveness, high oxygen reduction reaction (ORR) efficiency, and power performance enhancement. In this study, BEF‐MFC with carbon cloth (CC) cathode pyrolyzed with NDC‐M100/Fe3O4 at 700°C achieved higher ORR activity compared with the commercial Pt/C under same operational conditions. It also exhibited excellent crystalline structure according to high‐resolution transmission electron microscope (HRTEM) analysis. Moreover, using NDCN/Fe3O4 can facilitate further Fenton‐like reaction for the treatment of wastewater. Chemical oxygen demand (COD) removal efficiency of the reactor was 78% with maximum power density of 1.57 W/m3 in 216 hours. Thus, an innovative multi‐processing method with feasibility for enhanced wastewater treatment and improved power performance of the MFC was investigated. This can be effectively applied in related alternative energy production techniques and bio‐electrochemical systems in the future.